Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.09.06.556503

RESUMO

Antibodies play crucial roles in health and disease and are invaluable tools for diagnostics, research, and therapy. Although antibodies bind bivalently, we lack methods to analyse bivalent binding. Here, we introduce a particle-based model and use it to analyse bivalent binding of SARS-CoV-2 RBD-specific antibodies in surface plasmon resonance assays. The method reproduces the monovalent on/off-rates and enables measurements of new parameters, including the molecular reach, which is the maximum antigen separation that supports bivalent binding. We show that the molecular reach (22-46 nm) exceeds the physical size of an antibody (15 nm) and that the variation in reach across 45 patient-isolated antibodies is the best correlate of viral neutralisation. Using the complete set of fitted parameters, the model predicts an emergent antibody binding potency that equals the neutralisation potency. This novel analytical method should improve our understanding and exploitation of antibodies and other bivalent molecules.

2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.02.24.529520

RESUMO

Defending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction. These Quartet Nanocages induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented on the vaccine. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increased the strength and breadth of an otherwise narrow immune response. Quartet Nanocages are a strategy with potential to confer heterotypic protection against emergent zoonotic coronavirus pathogens and facilitate proactive pandemic protection.


Assuntos
Síndrome Respiratória Aguda Grave
3.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-612205.v1

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is normally controlled by effective host immunity including innate, humoral and cellular responses. However, the trajectories and correlates of acquired immunity, and the capacity of memory responses months after infection to neutralise variants of concern - which has important public health implications - is not fully understood. To address this, we studied a cohort of 78 UK healthcare workers who presented in April to June 2020 with symptomatic PCR-confirmed infection or who tested positive during an asymptomatic screening programme and tracked virus-specific B and T cell responses longitudinally at 5-6 time points each over 6 months, prior to vaccination. We observed a highly variable range of responses, some of which - T cell interferon-gamma (IFN-γ) ELISpot, N-specific antibody waned over time across the cohort, while others (spike-specific antibody, B cell memory ELISpot) were stable. In such cohorts, antiviral antibody has been linked to protection against re-infection. We used integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling Over Night) to explore this heterogeneity and to identify predictors of sustained immune responses. Hierarchical clustering defined a group of high and low antibody responders, which showed stability over time regardless of clinical presentation. These antibody responses correlated with IFN-γ ELISpot measures of T cell immunity and represent a subgroup of patients with a robust trajectory for longer term immunity. Importantly, this immune-phenotype associates with higher levels of neutralising antibodies not only against the infecting (Victoria) strain but also against variants B.1.1.7 (alpha) and B.1.351 (beta). Overall memory responses to SARS-CoV-2 show distinct trajectories following early priming, that may define subsequent protection against infection and severe disease from novel variants.


Assuntos
COVID-19
4.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.434447

RESUMO

The ability of acquired immune responses against SARS-CoV-2 to protect after subsequent exposure to emerging variants of concern (VOC) such as B1.1.7 and B1.351 is currently of high significance. Here, we use a hamster model of COVID-19 to show that prior infection with a strain representative of the original circulating lineage B of SARS-CoV-2 induces protection from clinical signs upon subsequent challenge with either B1.1.7 or B1.351 viruses, which recently emerged in the UK and South Africa, respectively. The results indicate that these emergent VOC may be unlikely to cause disease in individuals that are already immune due to prior infection, and this has positive implications for overall levels of infection and COVID-19 disease.


Assuntos
COVID-19 , Infecções
5.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-226857.v1

RESUMO

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

6.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.267526

RESUMO

Plasmablast responses and derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients. An average of 13.7% and 13.0% of plasmablast-derived IgG MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. Of thirty-two antibodies specific for the spike glycoprotein, ten recognised the receptor-binding domain (RBD), thirteen were specific for non-RBD epitopes on the S1 subunit, and nine recognised the S2 subunit. A subset of anti-spike antibodies (10 of 32) cross-reacted with other betacoronaviruses tested, five targeted the non-RBD S1, and five targeted the S2 subunit. Of the plasmablast-derived MAbs reacting with nucleocapsid, over half of them (19 of 35) cross-reacted with other betacoronaviruses tested. The cross-reactive plasmablast-derived antibodies harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. We identified 14 of 32 anti-spike MAbs that neutralised SARS-CoV-2 in independent assays at [≤] 133 nM (20 g/ml) (five of 10 anti-RBD, three of 13 anti-non-RBD S1 subunit, six of nine anti-S2 subunit). Six of 10 anti-RBD MAbs showed evidence of blockade of ACE2 binding to RBD, and five of six of these were neutralising. Non-competing pairs of neutralising antibodies were identified, which offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Assuntos
COVID-19
7.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.272880

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19), a pandemic that has claimed over 700,000 human lives. The only SARS-CoV-2 antiviral, for emergency use, is remdesivir, targeting the viral polymerase complex. PF-00835231 is a pre-clinical lead compound with an alternate target, the main SARS-CoV-2 protease 3CLpro (Mpro). Here, we perform a comparative analysis of PF-00835231 and remdesivir in A549+ACE2 cells, using isolates of two major SARS-CoV-2 clades. PF-00835231 is antiviral for both clades, and, in this assay, statistically more potent than remdesivir. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps and validates PF-00835231s time of action. Both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 in human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective antiviral for SARS-CoV-2, addresses concerns from non-human in vitro models, and supports further studies with this compound.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
8.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.270306

RESUMO

Until now, no approved effective vaccine and antiviral therapeutic are available for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a SCoV-2 Spike glycoprotein (SP), including a SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. This study revealed that a C-terminal 17 amino acid deletion in SCoV-2 SP significantly increases the incorporation of SP into the pseudotyped viruses and enhanced its infectivity, which may be helpful in the design of SCoV2-SP-based vaccine strategies. Moreover, based on this system, we have demonstrated that an aqueous extract from the Chinese herb Prunella vulgaris (CHPV) and a compound, suramin, displayed potent inhibitory effects on both wild type and mutant (G614) SCoV-2 SP pseudotyped virus (SCoV-2-SP-PVs)-mediated infection. The 50% inhibitory concentration (IC50) for CHPV and suramin on SCoV-2-SP-PVs are 30, and 40 g/ml, respectively. To define the mechanisms of their actions, we demonstrated that both CHPV and suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, our results also showed that CHPV or suramin can efficiently reduce levels of cytopathic effect caused by SARS-CoV-2 virus (hCoV-19/Canada/ON-VIDO-01/2020) infection in Vero cells. Furthermore, our results demonstrated that the combination of CHPV/suramin with an anti-SARS-CoV-2 neutralizing antibody mediated more potent blocking effect against SCoV2-SP-PVs. Overall, this study provides evidence that CHPV and suramin has anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.


Assuntos
Infecções por Coronavirus , COVID-19 , Ictiose Vulgar
9.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.271684

RESUMO

We assessed the infectivity, replication dynamics and cytopathogenicity of the first Swedish isolate of SARS-CoV-2 in six different cell lines of human origin and compared their growth characteristics. High replication kinetics in absence of cytopathic-effect observed in many cell lines provided important clues on SARS-CoV-2 pathogenesis.

10.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.255463

RESUMO

Resolvins (Rv) are endogenous lipid autacoids that mediate resolution of inflammation and bacterial infections. Their roles in SARS-CoV-2 and COVID-19 are of considerable interest in the context of cystic fibrosis (CF) given the paucity of data regarding the effect of this virus on immune cells from individuals with CF. Here, we provide evidence for Rv biosynthesis and regulatory actions on CF macrophage inflammatory responses.


Assuntos
COVID-19 , Fibrose Cística , Inflamação , Infecções Bacterianas
11.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.271130

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. However, previous studies only characterized short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7-10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detectable. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed Zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of 2.5 x 105 virions per cm2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.


Assuntos
COVID-19 , Infecções Tumorais por Vírus
12.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.271957

RESUMO

A consensus virtual screening protocol has been applied to ca. 2000 approved drugs to seek inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19. 42 drugs emerged as top candidates, and after visual analyses of the predicted structures of their complexes with Mpro, 17 were chosen for evaluation in a kinetic assay for Mpro inhibition. Remarkably 14 of the compounds at 100-M concentration were found to reduce the enzymatic activity and 5 provided IC50 values below 40 M: manidipine (4.8 M), boceprevir (5.4 M), lercanidipine (16.2 M), bedaquiline (18.7 M), and efonidipine (38.5 M). Structural analyses reveal a common cloverleaf pattern for the binding of the active compounds to the P1, P1, and P2 pockets of Mpro. Further study of the most active compounds in the context of COVID-19 therapy is warranted, while all of the active compounds may provide a foundation for lead optimization to deliver valuable chemotherapeutics to combat the pandemic.


Assuntos
COVID-19
13.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.06.14.147868

RESUMO

In the absence of a proven effective vaccine preventing infection by SARS-CoV-2, or a proven drug to treat COVID-19, the positive results of passive immune therapy using convalescent serum provides a strong lead. We have developed a new class of tetravalent, biparatopic therapy, 89C8-ACE2. It combines the specificity of a monoclonal antibody (89C8) that recognizes the relatively conserved N-terminal domain (NTD) of the viral S glycoprotein, and the ectodomain of ACE2, which binds to the receptor-binding domain (RBD) of S. This molecule shows exceptional performance in vitro, inhibiting the interaction of recombinant S1 to ACE2 and transduction of ACE2-overexpressing cells by S-pseudotyped lentivirus with IC50s substantially below 100 pM, and with potency approximately 100-fold greater than ACE2-Fc itself. Moreover, 89C8-ACE2 was able to neutralize authentic virus infection in a standard assay at low nanomolar concentrations, making this class of molecule a promising lead for therapeutic applications.


Assuntos
COVID-19 , Infecções Tumorais por Vírus
14.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.06.12.148387

RESUMO

The COVID-19 pandemic has had unprecedented health and economic impact, but currently there are no approved therapies. We have isolated an antibody, EY6A, from a late-stage COVID-19 patient and show it neutralises SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds tightly (KD of 2 nM) the receptor binding domain (RBD) of the viral Spike glycoprotein and a 2.6[A] crystal structure of an RBD/EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues of this epitope are key to stabilising the pre-fusion Spike. Cryo-EM analyses of the pre-fusion Spike incubated with EY6A Fab reveal a complex of the intact trimer with three Fabs bound and two further multimeric forms comprising destabilized Spike attached to Fab. EY6A binds what is probably a major neutralising epitope, making it a candidate therapeutic for COVID-19.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA